Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
PLoS One ; 16(9): e0255841, 2021.
Article in English | MEDLINE | ID: covidwho-1394541

ABSTRACT

BACKGROUND: Efforts to minimize COVID-19 exposure during the current SARS-CoV-2 pandemic have led to limitations in access to medical care and testing. The Tasso-SST kit includes all of the components necessary for remote, capillary blood self-collection. In this study, we sought to investigate the accuracy and reliability of the Tasso-SST device as a self-collection device for measurement of SARS-CoV-2 IgG antibodies. METHODS: Capillary blood was obtained via unsupervised and supervised application of the Tasso-SST device, and venous blood was collected by standard venipuncture. Unsupervised self-collected blood samples underwent either extreme summer or winter-simulated shipping conditions prior to testing. Sera obtained by all three methods were tested concurrently using the EuroImmun anti-SARS-CoV-2 S1 IgG assay in a CLIA-certified clinical laboratory. RESULTS: Successful Tasso-SST capillary blood collection by unsupervised and supervised administration was completed by 93.4% and 94.5% of participants, respectively. Sera from 56 participants, 55 with documented (PCR+) COVID-19, and 33 healthy controls were then tested for anti-SARS-CoV-2 IgG antibodies. Compared to venous blood results, Tasso-SST-collected (unstressed) and the summer- and winter-stressed blood samples demonstrated Deming regression slopes of 1.00 (95% CI: 0.99-1.02), 1.00 (95% CI: 0.98-1.01), and 0.99 (95% CI: 0.97-1.01), respectively, with an overall accuracy of 98.9%. CONCLUSIONS: Capillary blood self-collection using the Tasso-SST device had a high success rate. Moreover, excellent concordance was found for anti-SARS-CoV-2 IgG results between Tasso-SST capillary and standard venous blood-derived sera. The Tasso-SST device should enable widespread collection of capillary blood for testing without medical supervision, facilitating epidemiologic studies.


Subject(s)
Antibodies, Viral/immunology , Blood Specimen Collection/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Aged , Blood Specimen Collection/instrumentation , COVID-19/epidemiology , COVID-19/virology , COVID-19 Testing/instrumentation , Female , Humans , Male , Middle Aged , Pandemics , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity , Young Adult
3.
Biochem Med (Zagreb) ; 31(2): 020710, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1278714

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has posed several challenges to clinical laboratories across the globe. Amidst the outbreak, errors occurring in the preanalytical phase of sample collection, transport and processing, can further lead to undesirable clinical consequences. Thus, this study was designed with the following objectives: (i) to determine and compare the blood specimen rejection rate of a clinical laboratory and (ii) to characterise and compare the types of preanalytical errors between the pre-pandemic and the pandemic phases. MATERIALS AND METHODS: This retrospective study was carried out in a trauma-care hospital, presently converted to COVID-19 care centre. Data was collected from (i) pre-pandemic phase: 1st October 2019 to 23rd March 2020 and (ii) pandemic phase: 24th March to 31st October 2020. Blood specimen rejection rate was calculated as the proportion of blood collection tubes with preanalytical errors out of the total number received, expressed as percentage. RESULTS: Total of 107,716 blood specimens were screened of which 43,396 (40.3%) were received during the pandemic. The blood specimen rejection rate during the pandemic was significantly higher than the pre-pandemic phase (3.0% versus 1.1%; P < 0.001). Clotted samples were the commonest source of preanalytical errors in both phases. There was a significant increase in the improperly labelled samples (P < 0.001) and samples with insufficient volume (P < 0.001), whereas, a significant decline in samples with inadequate sample-anticoagulant ratio and haemolysed samples (P < 0.001). CONCLUSION: In the ongoing pandemic, preanalytical errors and resultant blood specimen rejection rate in the clinical laboratory have significantly increased due to changed logistics. The study highlights the need for corrective steps at various levels to reduce preanalytical errors in order to optimise patient care and resource utilisation.


Subject(s)
Blood Specimen Collection/methods , COVID-19/diagnosis , Pre-Analytical Phase , Blood Specimen Collection/instrumentation , COVID-19/epidemiology , COVID-19/virology , Diagnostic Errors , Humans , Laboratories, Hospital/standards , Pandemics , Retrospective Studies , SARS-CoV-2/isolation & purification
4.
Sci Rep ; 11(1): 9475, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1216469

ABSTRACT

During August 2020, we carried out a serological survey among students and employees at the Okinawa Institute of Science and Technology Graduate University (OIST), Japan, testing for the presence of antibodies against SARS-CoV-2, the causative agent of COVID-19. We used a FDA-authorized 2-step ELISA protocol in combination with at-home self-collection of blood samples using a custom low-cost finger prick-based capillary blood collection kit. Although our survey did not find any COVID-19 seropositive individuals among the OIST cohort, it reliably detected all positive control samples obtained from a local hospital and excluded all negatives controls. We found that high serum antibody titers can persist for more than 9 months post infection. Among our controls, we found strong cross-reactivity of antibodies in samples from a serum pool from two MERS patients in the anti-SARS-CoV-2-S ELISA. Here we show that a centralized ELISA in combination with patient-based capillary blood collection using as little as one drop of blood can reliably assess the seroprevalence among communities. Anonymous sample tracking and an integrated website created a stream-lined procedure. Major parts of the workflow were automated on a liquid handler, demonstrating scalability. We anticipate this concept to serve as a prototype for reliable serological testing among larger populations.


Subject(s)
Blood Specimen Collection/methods , COVID-19 Serological Testing/methods , Antibodies, Viral/blood , Blood Specimen Collection/instrumentation , Coronavirus Infections/blood , Coronavirus Infections/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Humans , Phlebotomy/methods , Reproducibility of Results , Self-Testing , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Time Factors
5.
Sex Transm Infect ; 97(3): 209-214, 2021 05.
Article in English | MEDLINE | ID: covidwho-1189914

ABSTRACT

OBJECTIVES: We comparatively evaluated two HIV and syphilis blood sampling kits (dried blood spot (DBS) and mini tube (MT)) as part of an online STI postal sampling service that included tests for chlamydia and gonorrhoea. We aimed to see how the blood collection systems compared regarding sample return rates and result rates. Additionally, we aimed to observe differences in false-positive results and describe a request-to-result ratio (RRR)-the required number of kit requests needed to obtain one successful result. METHODS: We reviewed data from an online postal STI kit requesting service for a client transitioning from MT to DBS blood collection systems. We described service user baseline characteristics and compared kit requests, kit and blood sample return rates, and the successful resulting rates for HIV and syphilis for MT and DBS. Pearson's χ2 and Fisher's exact test were used to determine statistical differences, and statistical formulae were applied to produce CIs for differences in proportions. RESULTS: 5670 STI postal kit requests from a Midlands region were reviewed from 6 September 2016-2 January 2019 (1515 MT and 4155 DBS). Baseline characteristics between the two groups were comparable (68.0% female, 74.0% white British and 87.5% heterosexual, median age 26 years). Successful processing rates for DBS were 94.6% and 54.4% for MT (p<0.001) with a percentage difference of 40.2% (95% CI 36.9% to 43.4%). The RRR for MT was 2.9 cf. 1.6 for DBS. False-positive results for MT samples were 5.2% (HIV) and 0.4% (syphilis), and those for DBS were 0.4% (HIV) and 0.0% (syphilis). CONCLUSIONS: This comparative analysis demonstrated the superior successful processing rates for postal DBS collection systems compared with MT. Reasons for this included insufficient volumes, high false-positive rates and degradation of blood quality in MT samples. A postal sampling service using DBS to screen for HIV, syphilis and other blood-borne viruses could be a viable alternative.


Subject(s)
Blood Specimen Collection/methods , Dried Blood Spot Testing/methods , HIV Infections/diagnosis , Syphilis/diagnosis , Adult , Blood Specimen Collection/instrumentation , Dried Blood Spot Testing/instrumentation , False Positive Reactions , Female , HIV Infections/blood , Humans , Male , Syphilis/blood , Syphilis Serodiagnosis , Young Adult
6.
Ann Clin Biochem ; 58(5): 411-421, 2021 09.
Article in English | MEDLINE | ID: covidwho-1181016

ABSTRACT

BACKGROUND: The COVID-19 pandemic has drastically changed the delivery of secondary care services. Self-collection of capillary blood at home can facilitate the monitoring of patients with chronic disease to support virtual clinics while mitigating the risk of SARS-CoV-2 infection and transmission. OBJECTIVE: To investigate the comparability of whole blood capillary and plasma venous samples for 15 routinely used biochemical analytes and to develop and pilot a user-friendly home-collection kit to support virtual outpatient clinical services. METHODS: To investigate the comparability of whole blood capillary and plasma venous samples for 15 routinely requested biochemical analytes, simultaneous samples of venous and capillary blood were collected in EDTA and lithium-heparin plasma separation tubes that were of 4-6 mL and 400-600 µL draw volume, respectively. Venous samples were analysed within 4 h of collection while capillary samples were kept at ambient temperature for three days until centrifugation and analysis. Analyte results that were comparable between the matrices were then piloted in a feasibility study in three outpatient clinical services. RESULTS: HbA1c, lipid profile and liver function tests were considered comparable and piloted in the patient feasibility study. The home-collect kit demonstrated good patient usability. CONCLUSION: Home collection of capillary blood could be a clinically-useful tool to deliver virtual care to patients with chronic disease.


Subject(s)
Blood Chemical Analysis/methods , Blood Specimen Collection/methods , COVID-19/blood , Pandemics , SARS-CoV-2 , Adult , Blood Chemical Analysis/instrumentation , Blood Specimen Collection/instrumentation , Capillary Tubing , Feasibility Studies , Female , Humans , London , Male , Middle Aged , Phlebotomy/instrumentation , Phlebotomy/methods , Pilot Projects , Remote Consultation , Self Care/instrumentation , Self Care/methods , Surveys and Questionnaires
7.
Diabetes Technol Ther ; 23(8): 537-545, 2021 08.
Article in English | MEDLINE | ID: covidwho-1171321

ABSTRACT

Background: The COVID-19 pandemic has impacted the conduct of clinic visits. We conducted a study to evaluate two academic laboratories' fingerstick capillary blood collection kits suitable for home use for laboratory measurement of HbA1c. Methods: Four clinical sites recruited 240 participants (aged 4-80 years, HbA1c 5.1%-13.5%). Capillary blood samples were obtained by the participant or parent using collection kits from two laboratories (University of Minnesota Advanced Research and Diagnostic Laboratory (ARDL) and Children's Mercy Hospital Laboratory (CMH)) and mailed under varying shipping conditions by United States Postal Service to the laboratories. Comparisons were made between HbA1c measurements from capillary samples and contemporaneously obtained venous samples. The primary outcome was percentage of capillary HbA1c values within 5% of the corresponding venous values. Results: HbA1c values were within 5% of venous values for 96% of ARDL kit specimens shipped with a cold pack and 98% without a cold pack and 99% and 99%, respectively, for the CMH kits. R2 values were 0.98, 0.99, 0.99, and 0.99, respectively. Results appeared similar across HbA1c levels and for pediatric and adult participants. Usability survey scores were high. Conclusions: Capillary blood collection kits, suitable for home use, from two academic laboratories, were demonstrated to be easy to use and provided results that are comparable with those obtained from venous specimens. Based on these results, there is strong evidence that HbA1c measurements from capillary specimens obtained with these specific kits can be used interchangeably with HbA1c measurements from venous specimens for clinical research and clinical care.


Subject(s)
Blood Specimen Collection/instrumentation , COVID-19 , Capillaries , Diabetes Mellitus/blood , Glycated Hemoglobin/analysis , SARS-CoV-2 , Adolescent , Adult , Aged , Child , Child, Preschool , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Female , Humans , Male , Middle Aged , Specimen Handling/methods , Veins
8.
J Proteome Res ; 19(11): 4428-4441, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-974865

ABSTRACT

Quantitative nuclear magnetic resonance (NMR) spectroscopy of blood plasma is widely used to investigate perturbed metabolic processes in human diseases. The reliability of biochemical data derived from these measurements is dependent on the quality of the sample collection and exact preparation and analysis protocols. Here, we describe systematically, the impact of variations in sample collection and preparation on information recovery from quantitative proton (1H) NMR spectroscopy of human blood plasma and serum. The effects of variation of blood collection tube sizes and preservatives, successive freeze-thaw cycles, sample storage at -80 °C, and short-term storage at 4 and 20 °C on the quantitative lipoprotein and metabolite patterns were investigated. Storage of plasma samples at 4 °C for up to 48 h, freezing at -80 °C and blood sample collection tube choice have few and minor effects on quantitative lipoprotein profiles, and even storage at 4 °C for up to 168 h caused little information loss. In contrast, the impact of heat-treatment (56 °C for 30 min), which has been used for inactivation of SARS-CoV-2 and other viruses, that may be required prior to analytical measurements in low level biosecurity facilities induced marked changes in both lipoprotein and low molecular weight metabolite profiles. It was conclusively demonstrated that this heat inactivation procedure degrades lipoproteins and changes metabolic information in complex ways. Plasma from control individuals and SARS-CoV-2 infected patients are differentially altered resulting in the creation of artifactual pseudo-biomarkers and destruction of real biomarkers to the extent that data from heat-treated samples are largely uninterpretable. We also present several simple blood sample handling recommendations for optimal NMR-based biomarker discovery investigations in SARS CoV-2 studies and general clinical biomarker research.


Subject(s)
Blood Chemical Analysis/standards , Blood Specimen Collection/instrumentation , Coronavirus Infections , Lipoproteins/blood , Magnetic Resonance Spectroscopy/methods , Pandemics , Pneumonia, Viral , Artifacts , COVID-19 , Hot Temperature , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL